Unsupervised Recognition of Interleaved Activities of Daily Living through Ontological and Probabilistic Reasoning

Daniele Riboni
Univ. of Cagliari
Italy

Timo Sztyler
Univ. of Mannheim
Germany

Gabriele Civitarese
Univ. of Milano
Italy

Heiner Stuckenschmidt
Univ. of Mannheim
Germany
MOTIVATION
Scenario

Recognizing activities of daily living in a smart-home to support healthcare, home automation, a more independent life, ...

We rely on unobtrusive sensors ...
State of the Art and Open Issues

Most activity recognition systems rely on ...

... supervised-based approaches:
- acquire expensive labeled data sets
- often user/environment-specific

... knowledge-based approaches:
- unfeasible to enumerate all activity patterns

We propose an unsupervised method to recognize complex/interleaved ADLs

Based on hybrid ontological – probabilistic reasoning
Our approach ...

... overcomes drawbacks of supervised-based approach not user/environment-specific, no expensive data set, ...

... relies on semantic relations (activities↔ events)

derived from ontological reasoning

... recognizes interleaved activities

... inferred by a probabilistic model
MODEL AND SYSTEM
System overview

1. Semantic correlation reasoner
2. Statistical analysis of events
3. Markov Logic Network (MLN) / MAP Inference

MLN knowledge base

Event(se1,et1,t1)

semantic correlations

Recognized activity instances

Semantic integration layer

Semantic correlation reasoner
1. Semantic Correlation Reasoner

Why do we use Ontology (OWL2)?

- to derive semantic correlations (event type ↔ activity class)

Ontology / Axioms

- Ontology
- Axioms

OWL2 Reasoner infers

{turn on stove} is a predictive sensor event type for {Prepare hot meal} and {Prepare tea}

PPM Matrix

<table>
<thead>
<tr>
<th>PPM Matrix</th>
<th>stove</th>
<th>silverware_drawer</th>
<th>freezer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot meal</td>
<td>0.5</td>
<td>0.33</td>
<td>0.5</td>
</tr>
<tr>
<td>Cold meal</td>
<td>0.0</td>
<td>0.33</td>
<td>0.5</td>
</tr>
<tr>
<td>Tea</td>
<td>0.5</td>
<td>0.33</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Gabriele Civitarese
2. Statistical Analysis of Events

Input: PPM matrix and temporally ordered events

- infers most probable activity class for each event
- allows to define activity boundaries (activity instance candidate)

Our ontology is translated into the \(\text{MLN}_{NC} \) model
3. MLN / MAP Inference

Observed predicates

- Freezer
 - 0.5: hot meal
 - 0.5: cold meal
 - 0.0: tea

- Stove
 - 0.5: hot meal
 - 0.0: cold meal
 - 0.5: tea

ADL

- Hot meal?
- Cold meal?
- Tea?

Event 1: opens freezer (1:00pm)
Event 2: turns on stove (1:02pm)

Hidden predicates

- Sensor Event Freezer
 - Sensor Event Stove

- belong to ADL

- Hot meal
Data Sets

We consider two well-known data sets ...

1. CASAS (controlled environment)
 - Interleaved ADLs of twenty-one subjects
 - Sensors: movement, water, interaction, door, phone
 - Activities: fill medications dispenser, watch DVD, water plants, answer the phone, clean, choose outfit, ...

2. SmartFaber (uncontrolled environment)
 - An elderly woman diagnosed with Mild Cognitive Impairment
 - Sensors: magnetic, motion, presence, temperature
 - Activities: taking medicines, cooking, ...
CASAS (1/2)

- Our approach outperforms HMM
 ontological reasoning is effective

- Refinement improves boundary precision

![Graph showing F-Measure and Minutes for different acs (ac1 to ac8)]

- MLN_{NC} (Dataset)
- MLN_{NC} (Ontology)
- HMM (related work)

- Candidate
- Refined

![Graph showing Delta-Start and Delta-Dur for F-Measure and Minutes]
SmartFaber (2/2)

- unsupervised and supervised-based results are comparable
- results were penalized by a poor choice of sensors

![Graphs showing F-Measure and Minutes for Delta-Start and Delta-Dur](image)

- MLN$_{NC}$ (Dataset)
- MLN$_{NC}$ (Ontology)
- Supervised / SmartFarber
- Candidate
- Refined
DISCUSSION / FUTURE WORK
Discussion

Results with two large datasets of interleaved ADLs were positive, but...

- ... knowledge engineering is required (build ontology)

 existing smart-home ontologies can be reused

- ... it is questionable if one ontology can cover every home

 adaptation/extension should be performed (semi-) automatically
Future Work

Extensive real-world experiments should show ...

... if and how the ontology has to be adapted

... what happens in a multi-user environment

Can active learning allow to ...

... fine-tune existing models? (user’s environment/habits)

... evolve the ontology according to the current context?
THANK YOU FOR YOUR ATTENTION
BACKUP SLIDES
Semantic Integration Layer

- collects events data from a sensor network
- applies preprocessing rules to detect operations

Example

fridge door sensor signaled “1”

→

the operation is “opening the fridge”

<Event(se₁, et₁, t₁), ..., Event(seₖ, etₖ, tₖ)>
MLN Model (detailed)

PPM Matrix
- *PriorProbability

Statistical analysis of events
- *InstanceCandidate / *Event

Hidden predicates

Observed predicates

*PriorProbability
(SenEvent, ADL, ActivClass, p)

*Event
(SenEvent, EventType, Time)

*InstanceCandidate
(ADL, Start, Stop)

Occurrences
(SenEvent, ADL)

InstanceClass
(ActivClass, ADL)

Ontological constraints

time-aware inference
temporal
knowledge-based

Gabriele Civitarese